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Abstract

This paper presents the wave propagation in a cylinder coated with a thin piezoelectric layer. The piezoelectric
coupling effects are fully modeled in the mechanics model for this piezoelectric coupled cylindrical shell with bending
resistance. The decoupled torsional wave velocity and the dispersion curves for the two- mode shell model are obtained
theoretically. The cut-off frequency and phase velocities at limit wave number are also derived. The numerical simu-
lations are conducted to present the results of wave propagation in this cylindrical shell and as well as to compare the
results by the current bending theory and the membrane shell theory. From the comparisons, the results display obvious
deference of wave propagations in terms of dispersion characteristics by different shell theories when thicker piezo-
electric layer are used and when higher wave number is considered. The results of this paper can serve as a reference for
future study on wave propagation in coupled structures as well as in the design of smart structures incorporating pi-
ezoelectric materials. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The researches on wave propagation and vibration in pure piezoelectric structures have been received
considerable attention previously as exhibited by the work of Mindlin (1952), Tiersten (1963) and Bluestein
(1969). Research on its application for time delay devices has been investigated (Viktorov, 1967, 1981;
Curtis and Redwood, 1973; Sun and Cheng, 1974). Wave propagation and vibration in piezoelectric
coupled structures have been studied as well recently (see the work by Minagawa (1995) and Ding et al.
(1997)). One of the important potential applications of wave propagation in piezoelectric structures is about
the using of interdigital transducer (IDT). IDT was first used to excite the surface wave devices in radar
communication equipment as filters and delay lines (Varadan and Varadan, 2000), and some con-
sumer areas such as pagers, mobile phone, and sensors (Morgan, 1998; Campbell, 1998; White, 1998).
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Its important application in separating, amplifying, and storing signals and in other signal processing
applications in acoustic electronics were also paid attentions to (Auld, 1973a,b; Parton and Kudryavtser,
1988).

An important application of the piezoelectric materials is the health monitoring of structures by using
IDT. This application requires a piezoelectric layer surface bonded on the structures to be health moni-
tored, and the IDT is used to excite a wave propagating in the piezoelectric coupled structure to study the
wave signal for the purpose of damage detection of the host structure. Some methods and experimental
works on the rapid monitoring of structures using IDT to excite Lamb wave have been attempted (Badcock
and Birt, 2000; Monkhouse et al., 2000) in some plate-like structures. The use of IDT in the health
monitoring of a cylindrical shell structure requires the model of wave propagation in this piezoelectric
coupled shell structure. To the author’s knowledge, there are few works on the above research. Wave
propagation in an axi-symmetric cylindrical shell has been studied by Wang (2001) by membrane shell
theory. As higher wave numbers are usually of interest in the wave propagation problems, higher order
theories for shell structures are necessary in the modelling of shell structures.

The wave propagation in a shell structure had been studied for decades. The simplest membrane shell
model was put forth by Love (1944), in which the transverse forces, bending and twisting moments are
negligible. Such model is suitable for thin shell structures in which only normal and shear forces acting in
the mid-surface of the shell are considered. Although it is a low-order shell model, it is easy to present the
essential features of the shell, and what is more, it provides basic model for higher-order shell model in
which shear and twisting effects are considered. Some slight modified theories based on this simply model
was presented by Fliiggey (1934), Vlasov (1949), Donnel (1933), Sanders (1959). Mersky and Herrmann
(1958) included shear effects in both the axial and circumferential direction and rotary-inertia effects in the
study of axially symmetric waves in a cylindrical shell. Lin and Morgan (1956) developed the equations for
axially symmetric motions including shear effects and rotary-inertia effects. Cooper and Naghdi (1957)
presented a theory including shear effects and rotary-inertia for non-axially symmetric motion of shell
structures. A comparison study of wave propagation in a cylindrical shell by different shell theories by
Greenspon (1960) shows obvious discrepancies in studying dispersion curves of the shell structure by
different theories, especially at higher wave numbers.

The objective of this paper is to present the results of axi-symmetric wave motions in piezoelectric
coupled cylindrical shells with bending resistance by shell bending model under the inherent shear-rigidity
assumption. The dispersion curves for different ratios of the thickness of the piezoelectric layer to the
thickness of the host shell structure, as well as different core materials of the cylindrical shell are obtained
by the model. In addition, the phase velocity at limit wave number and cut-off frequency are also presented.
Comparison of the wave propagation in this piezoelectric shell by the bending theory in the paper and the
membrane shell theory Wang (2001) are also conducted to show the validity of the different shell theories in
view of wave propagation problems in the piezoelectric coupled cylindrical shells.

2. Mechanics model of the piezoelectric coupled cylindrical shell with bending resistance

A thin shell surface bonded by a piezoelectric layer is shown in Fig. 1(a). This shell with bending re-
sistance is under Love’s shear-rigidity assumption. This assumption indicates that a certain plane per-
pendicular to the mid-plane will still remain perpendicular to the mid-plane after deformation. The
coordinate is set to indicate the coordinates x for the direction along the shell, 0 for the direction of polar
angel, and r for the radial direction. The stress analysis on an infinitesimal element of the shell structure is
shown in Fig. 1(b). The governing equations of motion in the longitudinal, tangential, and radial directions
are, respectively,
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Fig. 1. A piezoelectric thin membrane shell (a) layout, (b) the stress analysis at an infinitesimal element.
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where u, v, and w are the longitudinal, transverse, and radial displacement of the section; R is the radius of
the shell; 4 and 4, are thickness of the shell and the piezoelectric layer; and p and p’ are mass densities of the
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shell and the layer; N,, Ny, Ny, and Ny are membrane stresses; M., My,, and M, are stress couples; O, and Oy
are normal shear stresses shown in Fig. 1(b).
Substituting Eqs. (4) and (5) into Eqgs. (2) and (3) yields,

aNg ang 1 ang 6M9 _ ’ 621)
W+E_E<—ax ﬂm)—(ﬂh“hl)@ (6)
M, 20°M, M, N, o Ow

0y S N oy ) S (7)

2 | R™XO0 R0 R or

Thus, the governing equation for the wave propagation in this cylindrical shell by the bending theory is
expressed by Egs. (1), (6), and (7).

The membrane stresses and bending stresses are obtained by integrating the stresses across the thickness
of the shell as follows:

5 S
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h h
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where a,, oy, and 7,4 are the normal and shear stresses distributed in the host shell and the piezoelectric
layer, and the superscripts 1 and 2 represent the variables in the host shell and the piezoelectric layer re-
spectively.

The poling direction of the piezoelectric material is assumed to be in the axial x-direction of shell, which
also means the x-direction is the axis of symmetry for the piezoelectric layer. The relationship of the strains
& €, and y,, and stresses a,, gy, and 1,y in the shell and piezoelectric layer may be obtained accordingly as

E
1
g, = m(f}x + US()) (14)
E
O'(l):m(SQ—FUSX) (15)
E

1 =1 _— 16
Ty0 /x()2(1+v) ( )
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0, = C33p&c + C13pey — €33pky = C33p8, + C13p80 + €33p o (17)
5 %

Oy = Clip€y + C13p&xr — €31pEy = Cl1p€o + C13péx + esip 5 (18)
2 . _ 4

Tog = CadpVyo — €15pE0 = Caapyp + €150 230 (19)

where ¢ and E, = (0¢/0x) are variables of the electric potential and the electric field distributed in the
piezoelectric layer; E and v are the Young’s modulus and Poisson ratio of host shell material; ¢33, =
C33 — (0%3/()11), Ci3p = C13 — (012013/011), Cllp = C11 — (C%Z/Cll), Ca4p = Cy4 arc effective elastic module of the
piezoelectric layer for plane stress problem; es;, = e31 — (c12/c11)esn, e1sp = e1s, €33, = €33 — (c13/c11)es are
effective piezoelectric constants of the piezoelectric layer for plane stress problem.

Under Love’s assumption in shell theory, the corresponding strains in the current coordinate system are
expressed as (Love, 1944)

ou O*w

& = a — Z@ (20)
1 ov w

89—R(W+60>—2Rzaez (21)
ov  Ou w

=5 TR0~ “Roxo0 (22)

It is obvious from the above proposed kinematics field that, in the current study of wave propagation in this
cylindrical shell, the piezoelectric layer is assumed to be very thin. Thus the middle session of the host
cylinder can still be assumed to remain un-deformed even after the layer of the piezoelectric material is
coated.

Substituting Egs. (20)-(22) into Eqgs. (8)-(13) gives,

M:A%JFAZ( +gg> +A32¥+A4R§26V22+A566—‘£ (23)
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where the expressions of 4; (i=1,...,6), B, (i=1,...,6), C (i=1,...,3), D;(i=1,...,95),
E (i=1,...,5),and F; (i =1,...,3) are shown in Appendix A.
Then the governing Egs. (1), (6) and (7) become,
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The electric displacements in the piezoelectric layer, on the other hand, are expressed as follows,

_ 0
D, = —E3, 6_2? + e33p8y + e31p80 (32)

Dy = + €15Yx (33)

Rl7)
““PRae

D, =0 (34)
where Z33, = E33 + (€3, /cn1), Zip = E11 + (e]5/css), are effective dielectric coefficients in the piezoelectric

layer for plane stress problem.
Satisfying the Maxwell equation f VDdz = 0, in view of Egs. (32)—(34), yields,

_ 62(/) ) u  es esp 3w esrp [ ow 0% eip 3w
" S T g Temaa — g )Gt (5 axae) ' 5e
0% %u Pw
+€15(m+m) —615(h+h1)m—0 (35)

3. Dispersive characteristics

The most important special case results from the axi-symmetric motion. Thus, if (0/06) = 0, Egs. (29)—
(31) and (35) become,
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It can be observed that Eq. (37) is decoupled from the remaining equations, which can be written as,
v 1%
o 40
o o (40)
where
o — C — (i/R) _ Gh + caahi (1 — ((h+m)/R))
' ph+ p'hy ph + p'hy
and
_F
~2(1+v)

This is the pure torsional motion of the shell. It can be seen clearly from the above expression that the
piezoelectric layer plays a role as a composite part in the structure, as the elastic modulus c44p is shown in
the expression. The mechanical coupling effect by the piezoelectric layer is quite obvious. However, no
piezoelectric effect is found, for no piezoelectric coefficients or dielectric constants are involved in the ex-
pression of the torsional phase velocity. Further, it can be seen that the solution of the torsional wave phase
velocity by membrane theory (Wang, 2001) can be obtained if F is set to be zero in the current study by
bending theory. Thus, the difference of the results by bending theory and membrane theory is clearly
observed, and this discrepancy can be evaluated from Eq. (40).

Now consider the wave propagation from the other governing equations by letting,

u = Uei<t—eD) (41)
w = Welct=e) (42)
Q= Pelct—e) (43)

where ¢ and ¢ are wave number and wave phase velocity respectively; U, W, and @ are magnitudes of
variables of the wave propagation.
Substituting wave solutions from Egs. (41)—(43) into Eq. (39) yields,

=%y 163“”W<1+(h+h)e33"é> (44)
H33p E33p RE 2 e

Substituting Eq. (44) into Eq. (38) yields the relationship between W and U as follows,
=i¢G U (435)
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where
G, B, 2, es3p [ Bs
G| = G, =—+D D
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where @ = ¢¢ is circular frequency of the motion.
Introducing Eq. (45) into Eq. (44) gives,

o =GyU
where
G 1 h+h
Gy = i33p _’_feilp 1 (_+ +m ﬁf)
Ea3p Hyp \RE 2 e

Substituting Egs. (45) and (46) into Eq. (36), we have
A
( — A48 -G8+ 4G —ASG4¢2) U=—(ph+p'h)o*U

Consider the large and small wave number limits. As £ — 0, the cut-off frequencies are:

(O] :0,

1 B 1 Eh hie
Wy = (B + Seﬂp)/(ph—&-p’hl) = ( ot crph + —= 31")/(/Othp/hl)
R 5_433[) R 11— ~—433p

If no piezoelectric layer is surface bonded on the shell, i.e. #; = 0, we have

_1 /] E
P TR\ (-

This result is exactly the same with that obtained by membrane theory (Wang, 2001).

and

The dispersive solution for this piezoelectric coupled membrane shell is then obtained as,

A
(,()h + p’hl)cz — A — szl +A352G1 — A5Gy = 0
Rewrite Eq. (49) in the expression,

(ph+ p'hy)’c* — Hy (ph + p'hy )& + Hy = 0

where
e G
H =4 + 4522+ 2,
Z3p &
GA GLA 1 h+h G;
Hy = Gody 4 Gods — 245 esp <+ + ny essp f) ( €z3p>
RE & Eap \RE 2 e 5 E33p

The solutions for Eq. (50) are obtained herein,

(48)
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As & — 0, the phase velocity is,
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and we have the velocity at limit case, #; = 0,
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As ¢ — oo, the phase velocity ¢2;, goes to the limit value as,
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The wave velocity of the host metal is obtained from the above equation at #; = 0,
E
2 _
a0 (56)
On the other hand, ¢Z,, show a proportional variation with wave number at ¢ — oo,
1 eyp h+h 1
2 33p 2 2 2
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This result at 4y = 0 shown above is consistent with the results for pure metal cylindrical shell (Graff, 1991).

E

4. Numerical examples

The material properties of the host shell of aluminium and gold, and the piezoelectric layer of PZT4 are
listed in Table 1 for numerical analysis. In Figs. 2-5, the solutions for the torsional wave phase velocity, the
phase velocities of the coupling wave mode both at zero and infinite wave number, and the cut-off frequency
are plotted. To investigate the effect by the piezoelectric layer, the non-dimensional torsional velocity ¢,
phase velocity at zero wave number ¢, phase velocity at infinite wave number ¢;,r, and the cut-off frequency
o are defined as

/1 lzp /\/7 Cinf = Cmf/ 2 and o = RO)/ (1E_ 02)

For the purpose of comparison of the solutions by the membrane and bending shell theories, the solutions
by membrane shell theory (Wang, 2001) are also plotted in the Figs. 2-5.
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Table 1
Material properties
Aluminium Gold PZT-4
Mass density (kg/m?) p =28x10° p =19 x10* p=15x10
Young modulus (N/m?) E=170x10° E =78 x 10" e =132 x 10°,
Poisson ratio 0.33 0.42 cy3 = 115 x 10°,
Clp = 71 x 109, Ci3 = 73 % 109,
Caqy = 26 x 109

es3 (k/mz) —4.1
es; (k/m?) 14.1
els (k/mz) - — 10.5
Z11 (¢/m) - - 5.841 x 107°
E33 (¢p/m) - - 7.124 x 107°
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Fig. 2. Torsional wave velocity by two shell theories.
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Fig. 3. Wave velocity at zero wave number by two shell theories.

In Fig. 2, the discrepancies of the torsional wave velocities by the two shell theories are shown with the
change of the thickness of the piezoelectric layer. The first observation is that the velocity decreases with the
increase of the thickness of the piezoelectric layer for the shell with aluminium core, and the reverse trend
was found for the shell with the gold core for both membrane and bending shell theories. This observation
can be expected by the fact that the piezoelectric layer is stiffer than gold core, but softer than the alu-
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Fig. 4. Wave phase velocity at infinite wave number by two shell theories.
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Fig. 5. Cut-off frequency by two shell theories.

minium core. The different dispersive behaviour of the gold and aluminium piezoelectric coupled cylinder is
mainly due to the big differences of the Young’s module of the two metals. Another observation from the
figure is that the torsional wave phase velocity,

Ci — (B/R) Gh + cashi (1 — ((h + 1) /R))
ph+p'h

ph+ p'hy
by bending theory is lower than that obtained from membrane theory,

=S
ekt oy

in this structure as shown in Eq. (40) since F> > 0 listed in Appendix A. This discrepancy becomes more
obvious with thicker piezoelectric layer. In Figs. 3 and 4, the comparisons of wave phase velocities at zero
and infinite wave number by the two shell theories are conducted separately. It is not surprised to find that,
for both aluminium-PZT and gold-PZT shell structures, the wave velocities by bending theories are bigger
than those by membrane theory at zero wave number, but smaller than those by membrane theory at
infinite wave number. The discrepancies of the phase velocities for all the cases again become more obvious
with the increase of the piezoelectric layer. Similar observations were also obtained by Greenspon (1960)
when he did the comparison of the dispersion characteristics of a metallic cylindrical shell by different

¢ =
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Non-dimensional phase velocity

0.50 f
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0.00 -
0.00 1.00 2.00 3.00 4.00 5.00
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Fig. 6. Dispersion curves for aluminium-PZT shell.

approximate shell theories. One special observation from Fig. 4 shows that the variation of the phase
velocity at infinite wave number for gold-PZT shell is almost independent of the thickness of the piezo-
electric layer. From the discussion of the cut-off frequency of the cylindrical shell in Eq. (48), it is concluded
that the result of the cut-off frequency is independent of the theories used in the model. This conclusion is
observed from Eq. (48) and shown in Fig. 5, which is also derived by Wang (2001). The cut-off frequency in
the aluminium-PZT shell decreases with the increase of the piezoelectric layer, however, the reverse result is
shown for the gold-PZT shell.

The dispersion curves of the wave phase velocities for the first mode and the second wave mode at
thickness ratios of 0.2 and 0.4 for aluminium-PZT and gold-PZT cylindrical shell separately by bending
theory are shown in Figs. 6 and 7. The curves show different variation for different ratios of the piezoelectric

3.00

2.50 -

Second mode at ratio=0.2, ratio=0.4

2.00 -

1.00

0.50 -

Non-dimensional wave phase velocity
s
[4,]
o

First mode at ratio=0.2, ratio=0.

0.00 T " -
0.00 050 100 150 200 250 300 350 400 450 500

Non-dimensional wave number

Fig. 7. Dispersion curves for gold-PZT shell.
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Second mode by bending theory
2.00

First mode by bending theory
1.50

Second mode by membrane theory
1.00 |y

0.50

Non-dimensional wave phase velocity

First mode by membrane theory

0.00 -
0.00 1.00 2.00 3.00 4.00 5.00

Non-dimensional wave number

Fig. 8. Comparison of dispersion curves of aluminium-PZT shell by membrane and bending theory at ratio = 0.3.

layer at higher wave number. In addition, the phase velocity of the first mode approaches to an asymptotic
value, whereas, the velocity for the second wave mode show its linear variation with the wave number. The
analytical solutions for the two phase velocities are also shown in Eqgs. (55) and (57).

The comparison of the dispersion curves for the piezoelectric cylindrical shell by the membrane and
bending theories are illustrated in Fig. 8. As can be seen that the dispersion curves by the two theories
coincide completely at the lower wave number. Nevertheless, at higher wave number, they go to different
asymptotic solutions as discussed in this paper for the piezoelectric coupled shell, as well as by Greenspon
(1960) in his studies of comparison of the wave propagation by different theories for a pure metallic cy-
lindrical shell.

5. Concluding remarks

This paper studies the wave propagation in a piezoelectric coupled cylindrical shell with bending re-
sistance. The mathematical model for the wave propagation is presented, and the axi-symmetric motion is
investigated. The piezoelectric coupling effects are fully modeled in the mechanics model for this piezo-
electric coupled cylindrical shell. The limit of the theory lies in the fact the piezoelectric layer must be thin
enough so that the kinematics field proposed in the paper may be satisfied. The solutions for the decoupled
torsional phase velocity and the coupled transverse phase velocities of the first and second wave mode are
obtained theoretically. The comparison of the results by the bending theory and membrane theory is
conducted in numerical simulations. The main results from simulations show that the solutions of the wave
propagation in the piezoelectric cylindrical shell by bending theory and membrane theory display bigger
difference with the thicker piezoelectric layer and at higher wave number. Thus, the further work will focus
on the wave propagation in the piezoelectric coupled cylindrical shells by more general shell theories to
account for the effects of shear and bending or rotary inertia to obtain more accurate results in the ap-
plication of wave propagation of piezoelectric structures.

The results of this paper can serve as a reference for future study on wave propagation in piezoelectric
coupled structures as well as in the design of smart structures incorporating piezoelectric materials.
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Appendix A
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